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Fluctuation of the strength function
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We consider a single state stochastically coupled to its stochastic background states. The fluctuation of the
strength function of the single state is systematically studied. We find that the upper and lower deviations of the
strength function only depend on the ratio of the spreading width over the decay width of the single state and
on the ratio of the common decay width over the mean level spacing of the background states. Based on the
two fit formulas for the upper and lower deviations, the uncertainties of the full width at half maximum
~FWHM! and lifetime of a single state are estimated. They predict the experimental error bars of the FWHM
and lifetime. A comparison of the uncertainties with the experimental error bars is made for nuclear giant
dipole resonance, which illuminates our theoretical predictions.
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The mixing of a single state with its complicated bac
ground states due to residual interactions or external pe
bations is ubiquitous and important in a variety of fiel
ranging from condensed matter to atomic nuclei. The sin
state can be, for example, a collective mode in many-b
systems. The mixing makes the single state spread out
its background states and acquire a spreading width tha
most cases dominates the lifetime of the single state. U
the language of time evolution the mixing causes the da
ing of the single state. Such mixing can be convenien
described by the strength function that was introduced for
first time by Wigner in 1950s@1# and defined as

S~E!5(
j

u^0u j &u2d~E2Ej !. ~1!

Here u0& denotes the single state andu j & and Ej are the
eigenstates and eigenvalues of the total Hamiltonian of
coupled systems. In the 1960s the strength function was
discussed in the context of nuclear physics by Bohr and M
telson@2#.

Recently the strength function has received growing
tention. It has been applied to atomic clusters@3# the rare-
earth atom of Ce@4#, nuclear structure@5,6#. It has been also
studied in the context of the band-random matrix and emb
ded random matrix theories@7,8# as well as the Lipkin mode
@9# and the two-dimensional anharmonic oscillator mo
@10#.

The complexity of the background states and their c
plings with the single state justifies statistical treatments
which the strength function appears as a statistical quan
The average strength function has been extensively inv
gated. It has been recognized that usually the aver
strength function follows the Breit-Wigner~BW! formula
and the deviations from the BW formula can be found
some cases@4,5,7#. A statistical quantity should be characte
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ized by its average as well as its fluctuation. To the bes
our knowledge, however, nobody has discussed the fluc
tion of the strength function.

In the present paper we consider a single state coup
with its complicated background states. Being complica
the background states and their couplings with the sin
state are treated stochastically. In many physical situatio
for example, in nuclear giant dipole resonances~GDR! and
the decay out of a superdeformed band@11# both the single
and background states are no longer pure stationary st
They are unstable against particle org emission. Therefore
as a general consideration, we shall introduce the de
widths for the single and background states. The system
becomes open and its Hamiltonian non-Hermitian. Suc
kind of Hamiltonian was used by Humblet and Rosenfe
@12# and Mahaux and Weidenmu¨ller @13# on nuclear reac-
tions in 1960s, and later by Sokolov and Zelevinsky on
statistical theory of overlapping resonances@14# and by
Weidenmu¨ller et al. on the decay out of a superdeforme
band@15#. We shall focus on the fluctuation of the streng
function, full width at half maximum~FWHM! and lifetime
of the single state.

To define our model we denote the single state byu0&; its
energy byE0. The background states are modeled as eig
states of the Gaussian orthogonal ensemble~GOE! of ran-
dom matrices@11,15,16#. We denote them byu j & with j
51, . . . ,K and K@1; their energies byEj . We denote the
decay width of the single state byG0. We assume that the
decay widths of all the background states have the comm
valueGb . The matrix elementsV0 j connecting the single and
the background states are responsible for their mixing. T
energiesEj follow the GOE distribution, and theV0 j ’s are
uncorrelated Gaussian distributed random variables w
mean value zero and common variancev2. The spreading
width G↓ is defined by Fermi golden ruleG↓52pv2/d, with
d the mean level spacing of the background states.

The HamiltonianH of the system is a matrix of dimensio
K11 and has the form (j ,l 51, . . . ,K)
©2002 The American Physical Society08-1
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H5S E0 V0 j

V0l d j l Ej
D . ~2!

To H must be added the diagonal width matrixS0B given by

S0B52~ i /2!S G0 0

0 d j l Gb
D . ~3!

The effective HamiltonianHeff is given by

Heff5H1S0B . ~4!

The strength function can be expressed in terms of
resolvent of the effective Hamiltonian

S~E!52
1

p
ImS K 0U 1

E2Heff
U0L D . ~5!

Equation ~5! is identical to Eq.~1! for vanishing decay
widths. S(E) varies with the realization of the ensemble
random matrices. Its ensemble average involves an ave
over both, the distribution of matrix elementsV0 j and the
distribution of eigenvaluesEj . By means of the supersym
metry approach, the ensemble average ofS(E) can be
worked out analytically@15,17# and denoted by a bar,

S~E!5
1

2p

G01G↓

~E2E0!21~G01G↓!2/4
. ~6!

It exactly follows the BW formula and is independent ofGb .
The limit K→` has been taken in calculation.

The calculation of the fluctuation ofS(E) around its av-
erage is beyond the scope of the supersymmetry techni
Therefore we employ numerical simulation to compute
fluctuation. In our numerical calculations we use matrices
dimensionK51000 or bigger and calculateN5104 or more
realizations. As a result the calculated average ofS(E) coin-
cides with that given by formula~6!. This constitutes a tes
for the accuracy of our numerical simulation. For conv
nienceG0 , Gb , G↓, E, andE0 are measured in units of th
mean level spacingd andd is taken to be a unit. Therefore
they are dimensionless, and their values indicate the ratio
them tod.

With S(E)(n) the value ofS(E) obtained in thenth real-
ization (n51, . . . ,N), two sets labeled withi 51,2 are
formed depending on whetherS(E)(n).S(E) or S(E)(n)

,S(E), respectively, each set containingNi realizations la-
beledm i51, . . . ,Ni . We then define the standard upper d
viation s (1)(E) and lower deviations (2)(E),

s ( i )~E!5A 1

Ni
(
m i

Ni

@S~E!(m i )2S~E!#2. ~7!

Here we would emphasize that the fluctuation involved
random matrix models is qualitatively different from that
the statistical mechanics of macroscopic bodies@18#. The
former results from the stochasticity of the relevant rand
matrix and random couplings. It is inherent and will nev
vanish as the dimension of the matrix goes to infinity. It w
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approach constants that are independent of the dimensi
the dimension is large enough. The latter is usually the re
of a coupling to a heat bath. It will vanish in the thermod
namical limit. We notice that the upper and lower deviatio
become constants independent of the dimension and num
of realizations if the dimension and number are large enou
We show how the upper and lower deviations change w
G↓ in Figs. 1~a!–1~c! and with Gb in Figs. 1~d!–1~f!. G↓

measures the stochastic coupling strength. WhenG↓ is small
the single state spreads out over a few background sta
Then the average strength function as well as its deviati
are located within a small range of energy. This situation
illustrated in Fig. 1~a! whereG↓50.05. With the increase o
G↓ the single state spreads out over more and more b
ground states and the energy range where the deviations
tribute becomes larger and larger as shown in Figs. 1~a!–
1~c!. At the same time from Figs. 1~a!–1~c! one can find that
with increasingG↓ the deviations decrease in magnitud
however, their ratios to the average strength function k
going up. The deviations strongly depend onGb as illustrated
in Figs. 1~d!–1~f!. In the case of smallGb the deviations are
very large. The deviations are reduced with the increase
Gb . Such behavior reflects directly the role played by in
vidual background states. To understand this we show in
2 the strength function for a single realization as a funct
of energy for different values ofGb . In Fig. 2~a! Gb is small.

FIG. 1. Ensemble average of the strength function and its up
and lower deviations versus energy for different values ofG↓ and
Gb with G050.10. ~a!–~c! Gb52.0, ~d!–~f! G↓550.0.
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Then the background states are well isolated and their p
tions strongly influence the locations of the peaks ofS(E).
So in this case large deviations can be expected. WhenGb is
large the background states overlap strongly and their lo
tions are less important toS(E). ThenS(E) becomes smooth
@see Fig. 2~b!# and small deviations prevail whenGb is large.

We find that the ratios of the deviations to the avera
keep constant for fixed values ofG↓, G0, andGb , namely,
they are independent of energy but depend onG↓, G0, and
Gb . Moreover, we find that the ratios only depend onG↓/G0
and Gb /d ~as mentioned aboved51) as long asG↓ is not
much small compared toG0,

R( i )~G↓/G0 ,Gb /d!5
s ( i )~E!

S~E!
~ i 51,2!. ~8!

SinceS(E) is known, the ratiosR( i )(G↓/G0 ,Gb /d) well
reflect the upper and lower deviations. Meanwhile this
ergy independence makes it possible to determine the de
dence of the ratios onG↓/G0 andGb /d. The ratios have been
calculated whenG↓/G0 and Gb /d are changed systemat
cally. This allows us to obtain two fit formulas of the ratio
as functions ofG↓/G0 andGb /d:

FIG. 2. Strength function versus energy in a single realizat
for different values ofGb with G050.10 andG↓5100.0.
02620
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(1)~G↓/G0 ,Gb /d!

55~Gb /d!20.45@12$120.0927~Gb /d!0.245%

3~G↓/G0! [ 20.00120.0775(Gb /d)0.267] #, ~9!

Rf it
(2)~G↓/G0 ,Gb /d!

5@120.461~Gb /d!0.304e20.165log2(Gb /d)#

3e20.001(Gb /d)@120.628e20.369(Gb /d)20.0586

3~G↓/G0! [ 20.14720.126(Gb /d)20.0570]

3exp@20.286$1

20.817~Gb /d!20.0297% log2~G↓/G0!##. ~10!

We emphasize that the formulas are not based on
theoretical arguments and present the result of an appro
based on trial and error. We show a comparison between
fit formulas ~solid lines! and the calculated values~dashed
lines! in Fig. 3. Because bothG↓/G0 and Gb /d range from
very small to very large values it is a tough task to get
formulas with a simple form and high precision. ForR(1) the

n FIG. 3. Comparison of the ratios given by the fit formulas w
those by the numerical simulations. Ratios are plotted as a func
of Gb /d ~a! and as a function ofG↓/G0 ~b!. The dashed lines show
the numerical results.
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difference between the fit formulas and the calculated va
becomes large ifGb /d is very small@see Fig. 3~a!#. How-
ever, it is less than 20% ifGb /d is larger than 1023. The two
formulas tell us that the deviations grow with the increase
G↓/G0 and are close to their saturating values whenG↓/G0 is
large enough~up to several orders of magnitude!. The devia-
tions are large whenGb /d is much less than 1~the back-
ground states are well isolated! and fall down with the in-
crease ofGb /d. They become small whenGb and d are
comparable and approach zero whenGb /d is large enough
~the background states are well overlapped!.

It is important to note that when the coupling matrix e
ments are kept and the background states are replace
eigenstates of the Poisson ensemble of random matrice
by ones generated by the ensemble in between the Po
and GOE@19# both the average and the deviations of t
strength function are almost the same as those of the G
In Fig. 4 we plot the average~inset! and deviations as a
function of energy for the cases of the GOE and Pois
distributions. One can see that the differences between
two cases in the average and deviations are difficult to
discerned. This suggests that the average and deviation
pend on the stochasticity of the background states and
plings but are almost independent of the correlation a
chaoticity of the background states. In the case of the G
there is a strong level correlation, and the spectrum is c
otic. Nevertheless there is no level correlation, and the sp
trum is regular in the case of the Poisson. It is implied tha
far as the average in Eq.~6! and deviations in Eqs.~9! and
~10! are concerned, the stochasticity of the background st
is necessary but the chaoticity may not be necessary. Th
fore the two fit formulas establish a general relationship
tween the fluctuation~deviations! of the strength function
and the properties of the stochastic background states

FIG. 4. Comparison of the GOE ensemble average~inset! of
strength function and its deviations versus energy with those of
Poisson.
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their stochastic couplings with a single state.
The FWHM of the strength function can be evaluated

terms of the BW formula. It is inversely proportional to th
peak value of the strength function. With the maximu
~minimum! peak value obtained by adding~subtracting! the
upper~lower! deviation to~from! the average peak value w
can estimate the upper and lower uncertainties of the FW
according to the inverse proportionality,

G f ull
upper5Ḡ f ull

R(2)

12R(2)
, ~11!

G f ull
lower5Ḡ f ull

R(1)

11R(1)
. ~12!

HereḠ f ull5G01G↓ is the mean FWHM. Further the lifetime
uncertainties can be evaluated as

t upper5
\

Ḡ f ull

R(1), ~13!

t lower5
\

Ḡ f ull

R(2). ~14!

Obviously the uncertainties of the FWHM and lifetime go u
as the ratiosR( i ) increase. This implies that these uncerta
ties increase withG↓/G0 and decrease withGb /d.

As was suggested in Ref.@18# the fluctuations observed in
complex quantum many-body systems are the manifesta
of their inherent chaotic dynamics. The chaotic dynamics
responsible for the stochasticity of the background states
couplings and physically justifies their stochastic descript
as well. A single realization of a random matrix ensemb
corresponds to an experimental event and a random m
ensemble to a set of experimental events. The ensemble
erage and deviations correspond to the experimental sta
cal average and statistical error bars which stem from
chaotic dynamics. Therefore formulas~9!–~14! predict the
experimental statistical error bars of the FWHM and lifetim
and provide important information for the relevant expe
mentalists. To exemplify our ideas we apply these formu
to calculate the deviations and uncertainties for nuclear G
and compare them with the experimental data. As is w
known nuclear GDR has been found in many nuclei throu
out the periodic table and extensively studied both theor
cally and experimentally. We take208Pb as an example to
illustrate our calculation. In the case of nuclear GDR t
single state is the GDR~a coherent superposition of one
particle one-hole states! and the background states are t
many-particle many-hole states. For the calculation of
decay widths we use the computer code developed by S
don and Rogers@20#. It contains a global optical-model po
tential to compute the transmission coefficients of nucleo
These in turn are used to determine the mean absorp
cross section and the decay widths of many-particle ma
hole states using the exciton model@21#. The decay width for
the GDR G0 and the common decay width for the bac

e
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ground statesGb are evaluated at the centroid energy of t
GDR ~13.5 MeV! for one-particle one-hole states and tw
particle two-hole states, respectively. Using the meth
described above we obtainG050.11 MeV and Gb
50.30 MeV. The level mean spacing of the backgrou
states at the centroid energy is calculated using the l
density of Fermi gas model, and is found to be 0.0027
The spreading widthG↓ is the difference between th
FWHM ~4.0 MeV! and decay width of the GDR and equal
3.89 MeV. The FWHM is determined experimentally@22#.
One can see that the spreading width dominates the FW
and hence the lifetime. With the values of the decay widt
mean level spacing and spreading width, we haveG↓/G0
535 andGb /d51.13108. By means of formulas~9! and
~10!, both the upper and lower deviations are found to
vanishing. Then, the uncertainties of the FWHM and lifetim
are also vanishing according to formulas~11!–~14!. The rel-
evant experimental data are available in Ref.@23#. One can
find that the experimental error bar of cross section of
GDR ~which is obtained by integrating the strength functi
over impact parameter! is no more than 5%. This error ba
might not be of statistics but of systematics. The error bar
the FWHM and lifetime are so small that they are neglec
at all. So the theoretical predictions agree with the exp
mental data. For other nuclei, the conclusion remains
same.

The fluctuations in the present paper are calculated w
the dimension of the matrix is large enough. They are s
able to describe the situations where the number of the b
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ground states is large enough, for instance, nuclear g
resonances. If the number of the background states beco
finite then the strength function and its fluctuation diff
from those with infinite number@24#. We shall study the
problem of finite background states in future.

In conclusion, we have found that the ratios of upper a
lower deviations of the strength function to the average k
constant and only depend onG↓/G0 and Gb /d if G↓ is not
much smaller thanG0. The ratios are fitted by two formula
that establish a general relationship between the fluctua
~deviations! of the strength function and the properties of t
stochastic background states and their stochastic coup
with a single state. Based on the two fit formulas we ha
estimated the uncertainties of the FWHM and lifetime o
single state that predict the corresponding experimental e
bars. We have exemplified our theoretical predictions
comparing them with the experimental data of nuclear G
and found an agreement between the theory and experim
Formulas~9!–~14! shed some light on the understanding
fluctuation of the strength function, FWHM and lifetime of
single state mixed by its complex background states, for
ample, a collective mode in many-body systems.
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