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Fluctuation of the strength function
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We consider a single state stochastically coupled to its stochastic background states. The fluctuation of the
strength function of the single state is systematically studied. We find that the upper and lower deviations of the
strength function only depend on the ratio of the spreading width over the decay width of the single state and
on the ratio of the common decay width over the mean level spacing of the background states. Based on the
two fit formulas for the upper and lower deviations, the uncertainties of the full width at half maximum
(FWHM) and lifetime of a single state are estimated. They predict the experimental error bars of the FWHM
and lifetime. A comparison of the uncertainties with the experimental error bars is made for nuclear giant
dipole resonance, which illuminates our theoretical predictions.
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The mixing of a single state with its complicated back-ized by its average as well as its fluctuation. To the best of
ground states due to residual interactions or external pertusur knowledge, however, nobody has discussed the fluctua-
bations is ubiquitous and important in a variety of fieldstion of the strength function.
ranging from condensed matter to atomic nuclei. The single |n the present paper we consider a single state coupling
state can be, for example, a collective mode in many-bodwith its complicated background states. Being complicated
systems. The mixing makes the single state spread out ov@ie background states and their couplings with the single
its background states and acquire a spreading width that igtate are treated stochastically. In many physical situations,
most cases dominates the lifetime of the single state. Using,, example, in nuclear giant dipole resonan¢8®R) and

the language of time evolution the mixing causes the dampg,o decay out of a superdeformed bdad] both the single

ing of the single state. Such mixing can be conveniently,\ hacrground states are no longer pure stationary states.

described by the strength function that was introduced for thel.h - : e
o . . : ey are unstable against particle piemission. Therefore,
first time by Wigner in 1950¢1] and defined as as a general consideration, we shall introduce the decay
widths for the single and background states. The system then
S(E)zz |(0|j)|2§(E—EJ-). (1) becomes open and its Hamiltonian non-Hermitian. Such a
! kind of Hamiltonian was used by Humblet and Rosenfeld
. . ‘ [12] and Mahaux and Weidenier [13] on nuclear reac-
Here |0) denotes the single state af and E; are the gons in 1960s, and later by Sokolov and Zelevinsky on a

eigenstates and eigenvalues of the total Hamiltonian of the ™ > | th f - d b
coupled systems. In the 1960s the strength function was wefjratistical theory of overlapping resonandst] and by

discussed in the context of nuclear physics by Bohr and MotYVeidenmiler et al. on the decay out of a superdeformed
telson[2]. band[15]. We shall focus on the fluctuation of the strength

Recently the strength function has received growing atfunction, full width at half maximun{(FWHM) and lifetime
tention. It has been applied to atomic clustgs$ the rare-  Of the single state.
earth atom of Cé4], nuclear structur5,6]. It has been also To define our model we denote the single statédy its
studied in the context of the band-random matrix and embedenergy byE,. The background states are modeled as eigen-
ded random matrix theori¢g,8] as well as the Lipkin model states of the Gaussian orthogonal ensenf@®E) of ran-
[9] and the two-dimensional anharmonic oscillator modeldom matrices[11,15,1. We denote them byj) with j
[10]. =1,... K andK>1; their energies b¥;. We denote the

The complexity of the background states and their coudecay width of the single state Hy,. We assume that the
plings with the single state justifies statistical treatments irdecay widths of all the background states have the common
which the strength function appears as a statistical quantitwalueI’, . The matrix element¥; connecting the single and
The average strength function has been extensively investihe background states are responsible for their mixing. The
gated. It has been recognized that usually the averagenergiesE; follow the GOE distribution, and th¥;’s are
strength function follows the Breit-WignefBW) formula  uncorrelated Gaussian distributed random variables with
and the deviations from the BW formula can be found inmean value zero and common variance The spreading
some caseft,5,7). A statistical quantity should be character- width I'! is defined by Fermi golden rulé'=27v?/d, with

d the mean level spacing of the background states.
The HamiltoniarH of the system is a matrix of dimension
*Email address: gu@ruby.scphys.kyoto-u.ac.jp K+ 1 and has the formj(l=1, ... K)
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The effective HamiltoniaH . is given by

th Deviations
S
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The strength function can be expressed in terms of the;3 0.06
resolvent of the effective Hamiltonian ’gz
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Equation (5) is identical to Eq.(1) for vanishing decay 2
widths. S(E) varies with the realization of the ensemble of
random matrices. Its ensemble average involves an averag **[ 4,4 "Mtz
over both, the distribution of matrix element; and the 06 © (€3]
distribution of eigenvalueg;. By means of the supersym- 0.06
metry approach, the ensemble average SYE) can be 04
worked out analyticallyf15,17] and denoted by a bar, 0.03
0.2
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It exactly follows the BW formula and is independentlgy. FIG. 1. Ensemble average of the strength function and its upper
The limit K—o has been taken in calculation. and lower deviations versus energy for different value§ bfand

The calculation of the fluctuation &(E) around its av- T, with ',=0.10.(a)—(c) I',=2.0, (d)—(f) I'*=50.0.
erage is beyond the scope of the supersymmetry technique.

Therefore we employ numerical simulation to compute the,nnrqach constants that are independent of the dimension if
flgctuat!on. In our nume_rlcal calculations we use matrices oo gimension is large enough. The latter is usually the result
dimensionk =1000 or bigger and calculaté=10" or more ¢ 5 coupling to a heat bath. It will vanish in the thermody-
realizations. As a result the calculated averag8(&) coin-  amical limit. We notice that the upper and lower deviations
cides with that given by formulé). This constitutes a test pecome constants independent of the dimension and number
for the accuracy of our numerical simulation. For conve-qf regjizations if the dimension and number are large enough.
niencel’y, I'y, I'!, E, andE, are measured in units of the \ye show how the upper and lower deviations change with
mean level spacing andd is taken to be a unit. Therefore, 1 i, Figs. 1a)-1(c) and with T, in Figs. 1d)—1(f). T

they are dimensionless, and their values indicate the ratios ¢f,easures the stochastic coupling strength. Wiheis small

them_ tod. ") ) ) the single state spreads out over a few background states.
With S(E)™ the value ofS(E) obtained in thenth real-  Thep the average strength function as well as its deviations

ization (n=1,...N), two sets labeled with=1,2 are  4e |gcated within a small range of energy. This situation is
formed depending on whethe®(E)™>S(E) or S(E)” jjustrated in Fig. 1a) wherel'} =0.05. With the increase of
<S(E), respectively, each set containihg realizations la- T'! the single state spreads out over more and more back-
beledu;=1, ... N;. We then define the standard upper de-ground states and the energy range where the deviations dis-
viation o®(E) and lower deviationr?)(E), tribute becomes larger and larger as shown in Figa)—1

W 1(c). At the same ltime from Figs.(8—1(c) one can find that
. N = with increasingl’* the deviations decrease in magnitude,
o(E)= \/ﬁI ; [S(E)™) - S(E)]* () however, their ratios to the average strength function keep
' going up. The deviations strongly dependIgpas illustrated
Here we would emphasize that the fluctuation involved inin Figs. 1d)—1(f). In the case of small', the deviations are
random matrix models is qualitatively different from that in very large. The deviations are reduced with the increase of
the statistical mechanics of macroscopic bodi#8]. The I',. Such behavior reflects directly the role played by indi-
former results from the stochasticity of the relevant randomvidual background states. To understand this we show in Fig.
matrix and random couplings. It is inherent and will never2 the strength function for a single realization as a function
vanish as the dimension of the matrix goes to infinity. It will of energy for different values df,,. In Fig. 2a) I',, is small.
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FIG. 2. Strength function versus energy in a single realization FIG. 3. Comparison of the ratios given by the fit formulas with
for different values of", with T';=0.10 andl''=100.0. those by the numerical simulations. Ratios are plotted as a function
of T'y/d (a) and as a function of /T’ (b). The dashed lines show

Then the background states are well isolated and their pos}l-1e numerical results.

tions strongly influence the locations of the peaksSOE). ROTYT T /d

So in this case large deviations can be expected. Whes fit ( 0.'p/d)

Igrge the background states overlap strongly and their loca- —5(I'y,/d) %4 1—{1—0.0927T, /d)°-24%

tions are less important 8 E). ThenS(E) becomes smooth

[see Fig. 20)] and small deviations prevail whdh, is large. X (T T )L~ 0-001-00775€ /)29 1 (9)
We find that the ratios of the deviations to the average

keep constant for fixed values 6f, 'y, andI',, namely, RZ(THTy,Tp/d)

they are independent of energy but dependlenT’,, and )

I',. Moreover, we find that the ratios only dependlonl’, =[1-0.461T,/d)0 30016809, /d)]

andI',/d (as mentioned above=1) as long ad"! is not

~0.0010, /d —o. ~0.0586
much small compared tb, X e 10y )[1—0.6283 0.369(, /d)

X (T l/FO) [—0.147-0.126(", /d) ~ 00579

_ O(E)
ROy, I'y/d)=—— (i=1,2. (8) x exy —0.2841
S(E
(E) —0.817T,/d) ~%929%10g%(I"'/Ty)]].  (10)
Since S(E) is known, the ratioR((I'H/Ty,T',/d) well We emphasize that the formulas are not based on any

reflect the upper and lower deviations. Meanwhile this entheoretical arguments and present the result of an approach
ergy independence makes it possible to determine the depebased on trial and error. We show a comparison between the
dence of the ratios ofi'/T"y andI', /d. The ratios have been fit formulas (solid lineg and the calculated valugglashed
calculated wherl'!/T', and ', /d are changed systemati- lines) in Fig. 3. Because both'!/T'y andI',/d range from
cally. This allows us to obtain two fit formulas of the ratios very small to very large values it is a tough task to get fit
as functions of /Ty andT",, /d: formulas with a simple form and high precision. FRI*) the
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0.4 - - - their stochastic couplings with a single state.

Iyd=2.0 The FWHM of the strength function can be evaluated in
rYir=20.0 terms of the BW formula. It is inversely proportional to the
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Hereﬁu”:FOJr I't is the mean FWHM. Further the lifetime
uncertainties can be evaluated as
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FIG. 4. Comparison of the GOE ensemble averéigeed of ful
strength function and its deviations versus energy with those of the 5
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difference between the fit formulas and the calculated values
becomes large if',/d is very small[see Fig. 88)]. How-  Obviously the uncertainties of the FWHM and lifetime go up
ever, it is less than 20% If,/d is larger than 103. Thetwo  as the ratioRR(") increase. This implies that these uncertain-
formulas tell us that the deviations grow with the increase ofies increase witl'!/T"y and decrease with, /d.
I''/T, and are close to their saturating values whefl' is As was suggested in RdfL8] the fluctuations observed in
large enougliup to several orders of magnitud@he devia- complex quantum many-body systems are the manifestation
tions are large whef',/d is much less than Ithe back- of their inherent chaotic dynamics. The chaotic dynamics is
ground states are well isolatednd fall down with the in-  responsible for the stochasticity of the background states and
crease ofl',/d. They become small wheh', and d are  couplings and physically justifies their stochastic description
comparable and approach zero wheg/d is large enough as well. A single realization of a random matrix ensemble
(the background states are well overlapped corresponds to an experimental event and a random matrix
It is important to note that when the coupling matrix ele- ensemble to a set of experimental events. The ensemble av-
ments are kept and the background states are replaced byage and deviations correspond to the experimental statisti-
eigenstates of the Poisson ensemble of random matrices oal average and statistical error bars which stem from the
by ones generated by the ensemble in between the Poissohaotic dynamics. Therefore formul#8)—(14) predict the
and GOE[19] both the average and the deviations of theexperimental statistical error bars of the FWHM and lifetime
strength function are almost the same as those of the GORnd provide important information for the relevant experi-
In Fig. 4 we plot the averagénsed and deviations as a mentalists. To exemplify our ideas we apply these formulas
function of energy for the cases of the GOE and Poissofo calculate the deviations and uncertainties for nuclear GDR
distributions. One can see that the differences between thend compare them with the experimental data. As is well
two cases in the average and deviations are difficult to b&nown nuclear GDR has been found in many nuclei through-
discerned. This suggests that the average and deviations dait the periodic table and extensively studied both theoreti-
pend on the stochasticity of the background states and cowally and experimentally. We tak&”®Pb as an example to
plings but are almost independent of the correlation andllustrate our calculation. In the case of nuclear GDR the
chaoticity of the background states. In the case of the GOBingle state is the GDRa coherent superposition of one-
there is a strong level correlation, and the spectrum is chgparticle one-hole statgsnd the background states are the
otic. Nevertheless there is no level correlation, and the speanany-particle many-hole states. For the calculation of the
trum is regular in the case of the Poisson. It is implied that aslecay widths we use the computer code developed by Shel-
far as the average in E¢6) and deviations in Eqg9) and  don and Roger§20]. It contains a global optical-model po-
(10) are concerned, the stochasticity of the background stataential to compute the transmission coefficients of nucleons.
is necessary but the chaoticity may not be necessary. Therghese in turn are used to determine the mean absorption
fore the two fit formulas establish a general relationship beeross section and the decay widths of many-particle many-
tween the fluctuation(deviationg of the strength function hole states using the exciton modi2l]. The decay width for
and the properties of the stochastic background states arlde GDR T and the common decay width for the back-

026208-4



FLUCTUATION OF THE STRENGTH FUNCTION PHYSICAL REVIEW B6, 026208 (2002

ground state$’, are evaluated at the centroid energy of theground states is large enough, for instance, nuclear giant
GDR (13.5 MeV) for one-particle one-hole states and two- resonances. If the number of the background states becomes
particle two-hole states, respectively. Using the methodinite then the strength function and its fluctuation differ
described above we obtail’,=0.11 MeV and I',  from those with infinite numbef24]. We shall study the
=0.30 MeV. The level mean spacing of the backgroundproblem of finite background states in future.

states at the centroid energy is calculated using the level |n conclusion, we have found that the ratios of upper and
density of Fermi gas model, and is found to be 0.0027 eViower deviations of the strength function to the average keep
The spreading widthl'! is the difference between the constant and only depend diV/T'y and T, /d if T is not
FWHM (4.0 MeV) and decay width of the GDR and equal to i ,ch smaller thaii',. The ratios are fitted by two formulas
3.89 MeV. The FWHM is determined experimentalB2]. ot establish a general relationship between the fluctuation
One can see that the spreading width dominates the FWHN}eyiationg of the strength function and the properties of the
and hence the lifetime. With the values of the decay widthSgqchastic background states and their stochastic couplings
mean level spacing and spreading width, we h&Vél'y  ith o single state. Based on the two fit formulas we have
=35 andT'y/d=1.1x10". By means of formulag9) and  estimated the uncertainties of the FWHM and lifetime of a
(10), both the upper and lower deviations are found to beingle state that predict the corresponding experimental error
vanishing. Ther!, the uncertainties of the FWHM and lifetimep5rs We have exemplified our theoretical predictions by
are also vanishing according to formulds)—(14). The rel-  comparing them with the experimental data of nuclear GDR
evant experimental data are available in R&8]. One can  anq found an agreement between the theory and experiment.
find that the experimental error bar of cross section of th¢ormulas(9)—(14) shed some light on the understanding of
GDR (which is obtained by integrating the strength functiony,ctuation of the strength function, FWHM and lifetime of a

over impact parametgis no more than 5%. This error bar gingle state mixed by its complex background states, for ex-
might not be of statistics but of systematics. The error bars Oémple, a collective mode in many-body systems.

the FWHM and lifetime are so small that they are neglected

at all. So the theoretical predictions agree with the experi- J.G. is grateful to K. Matsuyanagi, Y. Z. Zhuo, H. Aiba, S.

mental data. For other nuclei, the conclusion remains thélizutori, and K. Hagino for valuable discussions and to K.

same. Matsuyanagi for helpful suggestions. This work was sup-
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able to describe the situations where the number of the backrogram.
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